
Rounding Values Preserving Their Sum

Bernd Plumhoff

16-Aug-2025

Abstract

Rounded values do not always sum up to their original total, as demonstrated in this article.
How can you ensure that the sum of rounded percentages equals exactly 100%? Is it possible
to guarantee that, for accounting purposes, the distribution of overhead costs precisely matches
the original total? These challenges are well-known and have been studied extensively.

This article introduces a simple solution using Excel/VBA. The function presented here can
round relative values (e.g., percentages) to ensure they sum to exactly 100%. It can also round
absolute values (such as cost distributions) while preserving their original sum after rounding.
A key parameter allows users to choose which type of error to minimize – absolute error or
relative error – compared to the common half-up rounding method.

Disclaimer: The provided programs are intended solely for demonstration and informational
purposes. The author makes no guarantees regarding the accuracy, completeness, or functional-
ity of the programs. The use of the programs is at the user’s own risk. The author is not liable
for any damages arising from the use or unavailability of the programs, including but not limited
to data loss, production downtime, or lost profits. The user is solely responsible for checking
the programs for malware before use and for installing and using the programs in accordance
with the manufacturer’s instructions.

1

Contents

1 Rounding Values Preserving Their Sum 3
1.1 Percentage Example . 3
1.2 Example with Absolute Values . 3
1.3 The User-Defined VBA Function RoundToSum . 4
1.4 RoundToSum Program Code . 5
1.5 Round2Sum Lambda Expression . 6

2 Rounding Values Alters Their Sum 7
2.1 Rounded Percentages . 8
2.2 Monte Carlo Code . 9

3 Usage Examples of RoundToSum 10
3.1 Allocation of Overheads . 10
3.2 Exact Relation of Random Numbers - sbExactRandHistogrm 13
3.3 Take Vacation When Less is Going on . 17

3.3.1 Simple Example . 18
3.3.2 More Complex Example . 19

4 RoundToSum Versus Other ’Simple’ Methods 20
4.1 Calculation Example . 21
4.2 Conclusion . 22

5 References 22

List of Figures

1 Rounding two random numbers . 7
2 Percentage altered Sums of random Numbers . 7
3 Rounding two random Percentages . 8
4 Percentage altered Percentage Sums of random Numbers 8
5 Allocation of Overheads - Keys Overheads . 10
6 Allocation of Overheads - Overhead Costs . 10
7 Allocation of Overheads - Keys Support Cost Centres 11
8 Allocation of Overheads - Support Cost Centres . 12
9 sbExactRandHistogrm . 13
10 sbExactRandHistogrm Formulas . 13
11 Vacation Chart . 17
12 Vacation - Simple Example . 18
13 Vacation - More complex Example . 19
14 RoundToSum Comparison - Amend Last . 20
15 RoundToSum Comparison - Cascading Round . 20
16 RoundToSum Comparison - Example . 21
17 RoundToSum Comparison - Example Formulas . 21

2

1 Rounding Values Preserving Their Sum

If you need to round values without changing their rounded sum, you might need to round one or
more summands to the more distant rounded value.

1.1 Percentage Example

For example, the values 11, 45, and 555, which sum to 611, do not yield a percentage total of 100.00
but rather 99.99 if rounded to two decimal places. The bold values in non-sum cells have been
adjusted using the RoundToSum function:

Percentage Minimize Minimize
rounded to absolute relative

Values 2 decimals Error Error

11 1.80 1.80 1.80
45 7.36 7.37 7.36
555 90.83 90.83 90.84

Sum 611 99.99 100.00 100.00

The Excel / VBA function call RoundToSum({11,45,555},2,FALSE,1) would result in {1.80,
7.37, 90.83}, though. Here, the percentage value 7.364975 is rounded differently to achieve a
percentage sum of 100.00 and to minimize the absolute error compared to half-up rounding. By
using RoundToSum({11,45,555},2,FALSE,2) we would have received {1.80, 7.36, 90.84}, as this
would minimize the relative error.

1.2 Example with Absolute Values

The sum of the second column differs by +2,000 from the rounded sum. The bold values in
non-sum cells have been adjusted using the RoundToSum function:

Rounded Minimize Minimize
to absolute absolute relative

Values 1,000 Error Error

4.523 5.000 5.000 5.000
456 0 0 0

-78.845 -79.000 -79.000 -79.000
-14.491 -14.000 -15.000 -14.000
65.789 66.000 66.000 66.000
129.512 130.000 129.000 129.000
15.562 16.000 16.000 16.000
548.555 549.000 549.000 548.000
1.590 2.000 2.000 2.000
-897 -1.000 -1.000 -1.000
6.968 7.000 7.000 7.000
2.987 3.000 3.000 3.000

Sum 681.709 684.000 682.000 682.000

3

1.3 The User-Defined VBA Function RoundToSum

Name

RoundToSum – Rounding values preserving their rounded sum

Synopsis

RoundToSum(vInput, [lDigits], [bAbsSum], [lErrorType])

Description

RoundToSum rounds values without altering their rounded sum. It uses the largest remainder
method to minimize the error compared to the commonly used half-up rounding method. If the
error is identical for one or more values, the first value(s) encountered will be adjusted.

Note: This solution is limited to one-dimensional tables without subtotals. There is no general
solution for higher-dimensional tables or tables with subtotals.

Parameters

vInput — Range or array containing the unrounded input values.

lDigits — Optional, default value is 2. The number of digits to round to. For example: 0
rounds to integers, 2 rounds to the nearest cent, -3 rounds to the nearest thousand.

bAbsSum — Optional, default value is TRUE. TRUE rounds the values directly which you of-
ten need for accounting calculations. FALSE adjusts the percentages so they sum to exactly 100%.
This is frequently used in presentations of percentage distributions.

lErrorType — Optional, default value is 1. The type of error to minimize: 1 for absolute er-
ror, 2 for relative error. The absolute error you normally minimize for values you need to book in
general ledgers. For statistical distributions you often minimize the relative error to avoid amend-
ments in the tails of the distributions.

4

1.4 RoundToSum Program Code

Enum mc Macro Categories
mcFinancial = 1
mcDate and Time
mcMath and Trig
m c S t a t i s t i c a l
mcLookup and Reference
mcDatabase
mcText
mcLogical
mcInformation
mcCommands
mcCustomizing
mcMacro Control
mcDDE External
mcUser Defined
mcFirst custom category
mcSecond custom category ’ and so on

End Enum ’ mc Macro Categor ies

Function RoundToSum(vInput As Variant , Optional l D i g i t s As Long = 2 , Optional bAbsSum As Boolean = True ,
Optional lErrorType As Long = 1) As Variant
’ C a l c u l a t e rounded summands which e x a c t l y add up to t h e rounded sum o f unrounded summands .
’ I t u se s t h e l a r g e s t remainder method which minimizes t h e e r r o r to t h e o r i g i n a l unrounded summands .
’ V2 . 3 PB 27=Oct=2024 (C) (P) by Bernd Plumhof f
Dim b As Boolean , i As Long , j As Long , k As Long , n As Long , lCount As Long , lSgn As Long
Dim d As Double , dDi f f As Double , dRoundedSum As Double , dSumAbs As Double : Dim vA As Variant
With Appl i cat ion . WorksheetFunction

vA = . Transpose (. Transpose (vInput)) : On Error GoTo Errhdl : i = vA(1) ’ Force e r r o r in case o f v e r t i c a l a r ray s
On Error GoTo 0 : n = UBound(vA) : ReDim vC(1 To n) As Variant , vD(1 To n) As Variant : dSumAbs = .Sum(vA)
For i = 1 To n

d = I I f (bAbsSum , vA(i) , vA(i) / dSumAbs * 100#): vC(i) = .Round(d , l D i g i t s)
I f lErrorType = 1 Then ’ Ab so l u t e e r r o r

vD(i) = vC(i) = d
E l s e I f lErrorType = 2 Then ’ R e l a t i v e e r r o r

vD(i) = (vC(i) = d) * d
Else

RoundToSum = CVErr(xlErrValue) : Exit Function
End I f

Next i
dRoundedSum = .Round(I I f (bAbsSum , dSumAbs , 100#) , l D i g i t s)
dDi f f = .Round(dRoundedSum = .Sum(vC) , l D i g i t s)
I f dDi f f <> 0# Then

lSgn = Sgn(dDi f f) : lCount = .Round(Abs(dDi f f) * 10 ˆ l D i g i t s , 0)
’ Now f i n d h i g h e s t (l ow e s t) lCount i n d i c e s in vD
ReDim m(1 To lCount) As Long
For i = 1 To lCount : m(i) = i : Next i
For i = 1 To lCount = 1

For j = i + 1 To lCount
I f lSgn * vD(m(i)) > lSgn * vD(m(j)) Then k = m(i) : m(i) = m(j) : m(j) = k

Next j
Next i
For i = lCount + 1 To n

I f lSgn * vD(i) < lSgn * vD(m(lCount)) Then
j = lCount = 1
Do While j > 0

I f lSgn * vD(i) >= lSgn * vD(m(j)) Then Exit Do
j = j = 1

Loop
For k = lCount To j + 2 Step =1: m(k) = m(k = 1) : Next k : m(j + 1) = i

End I f
Next i
For i = 1 To lCount : vC(m(i)) = .Round(vC(m(i)) + dDi f f / lCount , l D i g i t s) : Next i

End I f
I f b Then vC = . Transpose (vC)
RoundToSum = vC
Exit Function

Errhdl :
’ Transpose v a r i a n t s to be a b l e to addr e s s them wi th vA(i) , not vA(i , 1)
b = True : vA = . Transpose (vA) : Resume Next

End With
End Function

Sub DescribeFunction RoundToSum ()
’Run t h i s on l y once , then you w i l l s e e t h i s d e s c r i p t i o n in t h e f u n c t i o n menu
Dim FuncName As String , FuncDesc As String , Category As String , ArgDesc (1 To 4) As String
FuncName = ”RoundToSum”
FuncDesc = ”Rounding va lues p r e s e rv ing t h e i r rounded sum”
Category = mcMath and Trig
ArgDesc (1) = ”Range or array which conta ins unrounded va lues ”
ArgDesc (2) = ” [Optional = 2] Number o f d i g i t s to round to . For example : 0 rounds to i n t eg e r s , ” &

” 2 rounds to the cent , =3 w i l l use thousands ”
ArgDesc (3) = ” [Optional = True] True takes the summands as they are ; Fa l se works on the summands ’ ” &

” percentages to make a l l pe rcentages add up to 100% exac t l y ”
ArgDesc (4) = ” [Optional = 1] Error type : 1= abso lute e r ror , 2 = r e l a t i v e e r r o r ”
Appl i cat ion . MacroOptions Macro:=FuncName , Desc r ip t i on :=FuncDesc , Category :=Category ,

ArgumentDescriptions :=ArgDesc
End Sub

5

1.5 Round2Sum Lambda Expression

With three Lambda expressions, we can replace the VBA function RandToSum by this Round2Sum
Lambda expression:

=LAMBDA(vI,lD,bA,lE,

LET(

i,IF(bA,vI,vI/SUM(vI)%),

r,ROUND(i,lD),

_C,ROUND(SUM(i),lD)-SUM(r),

_E,CHOOSE(lE,r-i,(r-i)*i),

_R, UniqRank(_E,IF(_C>0,1,0)),

_D,IF(_R<=ROUND(ABS(_C*10^lD),0),SGN(_C)*10^-lD,0),

r+IF(ROWS(r)=1,TRANSPOSE(_D),_D)

)

)

UniqRank is defined as:

=LAMBDA(Ref,[Order],

LET(

_ord,IF(ISOMITTED(Order),-1,IF(Order=0,-1,1)),

_r,INDEX(IF(ROWS(Ref)=1,TRANSPOSE(Ref),Ref),,1),

_c,ROWS(_r),

_i,SEQUENCE(ROWS(_r)),

INDEX(SORT(HSTACK2(_i,INDEX(SORT(HSTACK2(_r,_i),,_ord),,2)),2,1),,1)

)

)

And – since Excel’s worksheet function HSTACK only accepts ranges, not arrays – HSTACK2 as:

=LAMBDA(a,b,

MAKEARRAY(

ROWS(a),

2,

LAMBDA(r,c,

IF(c=1,INDEX(a,r),INDEX(b,r))

)

)

)

6

2 Rounding Values Alters Their Sum

How likely is it that a sum of rounded values is not identical to their rounded sum?
For two random floating point numbers this is obvious: The likelihood is around 25% - that is

the percentage of red in this picture:

Figure 1: Rounding two random numbers

But it might be somewhat surprising that the likelihood approaches 90% if you round and add
more and more numbers:

Figure 2: Percentage altered Sums of random Numbers

With seven floating point numbers the likelihood is already larger than 50% that the sum of
rounded values is not equal to their rounded sum.

7

2.1 Rounded Percentages

Rounded percentages also often fail to add up to 100%. With two random numbers the issue arises
only if both numbers equal 0.5:

Figure 3: Rounding two random Percentages

But with more random numbers it is similar to the problem stated initially, just with around
one number more. Rounded percentages of three arbitrary numbers fail to add up to 1 with a
chance of around 25%:

Figure 4: Percentage altered Percentage Sums of random Numbers

8

2.2 Monte Carlo Code

Const n = 100
Const runs = 20000
Const bOnlyPos it ive = True ’ Without l o s s o f g e n e r a l i t y

Sub monte car lo add rounded va lues ()
’ C a l c u l a t e s f o r 2 to n how l i k e l y i t i s
’ t h a t rounding would not a l t e r t h e i r sum .
’ Example : f o r 2 numbers t h e r e i s a 25% chance
’ t h a t t h e sum o f t h e i r rounded v a l u e s i s not
’ e qua l t o t h e i r rounded sum .
’ (C) (P) by Bernd Plumhof f 16=Dec=2023 PB V0 .3
Dim i As Long
Dim j As Long
Dim k As Long
Dim m As Long
Dim d As Double
Dim s1 As Double
Dim s2 As Double

With Appl i cat ion . WorksheetFunction
Randomize
For i = 2 To n

m = 0
For j = 1 To runs

s1 = 0#
s2 = 0#
For k = 1 To i

I f bOnlyPos it ive Then
d = Rnd()

Else
d = 2# * Rnd() = 1#

End I f
s1 = s1 + d
s2 = s2 + .Round(d , 0)

Next k
s1 = .Round(s1 , 0)
I f s1 <> s2 Then

m = m + 1
End I f

Next j
C e l l s (i , 1) = i
C e l l s (i , 2) = m / runs

Next i
End With
End Sub

Sub monte car l o pe rcentage sum of rounded va lue s ()
’ C a l c u l a t e s f o r 2 to n how l i k e l y i t i s t h a t
’ rounding would not a l t e r t h e i r p e r c en t a g e sum .
’ Example : f o r 2 numbers t h e r e i s a 25% chance
’ t h a t t h e sum o f t h e i r rounded v a l u e s i s not
’ e qua l t o t h e i r rounded sum .
’ (C) (P) by Bernd Plumhof f 16=Dec=2023 PB V0 .2
Dim i As Long
Dim j As Long
Dim k As Long
Dim m As Long
Dim s1 As Double
Dim s2 As Double

With Appl i cat ion . WorksheetFunction
Randomize
For i = 2 To n

m = 0
ReDim e (1 To i) As Double
For j = 1 To runs

s1 = 0#
For k = 1 To i

I f bOnlyPos it ive Then
e (k) = Rnd()

Else
e (k) = 2# * Rnd() = 1#

End I f
s1 = s1 + eFehler ! Textmarke n i cht d e f i n i e r t . (k)

Next k
s2 = 0#
For k = 1 To i

e (k) = .Round(1000# * e (k) / s1 , 0)
s2 = s2 + (k)

Next k
I f s2 <> 1000# Then

m = m + 1
End I f

Next j
C e l l s (i , 1) = i
C e l l s (i , 2) = m / runs

Next i
End With
End Sub

9

3 Usage Examples of RoundToSum

3.1 Allocation of Overheads

When allocating overhead costs to products you often encounter the fact that the resulting sum
of allocated overheads does not equal the original cost sum. Due to rounding differences you fre-
quently face a little cent difference. In this case the user defined function RoundToSum can help.

A Real-Life Example

We present an allocation of overheads where all individual cent values accurately add up to their
intermediate or final sums.

First you define how the overheads have to be allocated to support cost centres (sheet ‘Keys’):

Figure 5: Allocation of Overheads - Keys Overheads

The first allocation of overheads uses a rounding correction so that all summands accurately
sum up on support cost centre level (sheet ‘1 Allocation’):

Figure 6: Allocation of Overheads - Overhead Costs

10

The second allocation of overheads (sheet ‘Keys’) also uses a rounding correction so that all
support cost centres get accurately distributed to products:

Figure 7: Allocation of Overheads - Keys Support Cost Centres

11

The final result (sheet ’2 Allocation’):

Figure 8: Allocation of Overheads - Support Cost Centres

This correct allocation of overheads you will be able to enter into a general ledger without any
cent / penny difference.

12

3.2 Exact Relation of Random Numbers - sbExactRandHistogrm

It is fairly easy to create a loaded die, let us say on average the 6 should appear twice as often as
all the other numbers 1 thru 5: Enter into A1: =MIN(INT(RAND()*7+1),6)

But what if you want to create 7 rolls of this die and all numbers between 1 and 5 should appear
exactly once and 6 exactly twice?

Here is a general solution:

Figure 9: sbExactRandHistogrm

Figure 10: sbExactRandHistogrm Formulas

13

The User-Defined VBA Function sbExactRandHistogrm

Name
sbExactRandHistogrm – Create an exact double histogram distribution.

Synopsis
sbExactRandHistogrm(ldraw, dmin, dmax, vWeight)

Description
sbExactRandHistogrm creates an exact histogram distribution for ldraw draws of floating point

numbers with double precision within range dmin:dmax. This range is divided into vWeight.count
classes. Each class has weight vWeight(i), reflecting the probability of occurrence of a value within
the class. If weights can’t be achieved exactly for ldraw draws the largest remainder method will
be applied to minimize the absolute error. This function calls RoundToSum - see Appendix A.

Parameters

ldraw - Number of draws

dmin - Minimum = lower boundary of range of numbers to draw

dmax - Maximum = upper boundary of range of numbers to draw

vWeight - Array of weights. Array size determines the number of different classes the range
dmin : dmax is divided into. Values in this array specify likelihood of this class’ numbers to appear
(be drawn).

Program Code sbExactRandHistogrm

Function sbExactRandHistogrm (ldraw As Long ,
dmin As Double ,
dmax As Double ,
vWeight As Variant) As Variant

’ Creates an exac t his togram d i s t r i b u t i o n f o r ldraw draws wi th in range
’ dmin : dmax . This range i s d i v i d ed in t o vWeight . count c l a s s e s . Each
’ c l a s s has we igh t vWeight (i) r e f l e c t i n g the p r o b a b i l i t y o f occurrence
’ o f a va lue w i th in the c l a s s . I f we i gh t s can ’ t be ach ieved e x a c t l y f o r
’ ldraw draws the l a r g e s t remainder method w i l l be app l i e d to
’ minimize the a b s o l u t e error . This f unc t i on c a l l s (needs) RoundToSum.
’ (C) (P) by Bernd Plumhoff 01=May=2021 PB V0.9

Dim i As Long , j As Long , n As Long
Dim vW As Variant
Dim dSumWeight As Double , dR As Double

Randomize
With Appl i ca t ion . WorksheetFunction

14

vW = . Transpose (vWeight)
On Error GoTo Errhdl
i = vW(1) ’Throw error in case o f h o r i z on t a l array
On Error GoTo 0

n = UBound(vW)
ReDim dWeight (1 To n) As Double
ReDim dSumWeightI (0 To n) As Double
ReDim vR(1 To ldraw) As Variant

For i = 1 To n
I f vW(i) < 0# Then ’A nega t i v e we igh t i s an error

sbExactRandHistogrm = CVErr(xlErrValue)
Exit Function

End I f
’ Ca l cu l a t e sum of a l l we i gh t s
dSumWeight = dSumWeight + vW(i)

Next i

I f dSumWeight = 0# Then
’Sum of we i gh t s has to be g r ea t e r zero
sbExactRandHistogrm = CVErr(xlErrValue)
Exit Function

End I f

For i = 1 To n
’ Al ign we i gh t s to number o f draws
dWeight (i) = CDbl(ldraw) * vW(i) / dSumWeight

Next i

vW = RoundToSum(dWeight , 0)
On Error GoTo Errhdl
i = vW(1) ’Throw error in case o f h o r i z on t a l array
On Error GoTo 0

For j = 1 To ldraw

dSumWeight = 0#
dSumWeightI (0) = 0#
For i = 1 To n

’ Ca l cu l a t e sum of a l l we i gh t s
dSumWeight = dSumWeight + vW(i)
’ Ca l cu l a t e sum of we i gh t s t i l l i
dSumWeightI (i) = dSumWeight

Next i

dR = dSumWeight * Rnd

15

i = n
Do While dR < dSumWeightI (i)

i = i = 1
Loop

vR(j) = dmin + (dmax = dmin) * (CDbl(i) +
(dR = dSumWeightI (i)) / vW(i + 1)) / CDbl(n)

vW(i + 1) = vW(i + 1) = 1#

Next j

sbExactRandHistogrm = vR

Exit Function

Errhdl :
’ Transpose va r i an t s to be a b l e to address
’ them with vW(i) , not vW(i , 1)
vW = . Transpose (vW)
Resume Next
End With

End Function

16

3.3 Take Vacation When Less is Going on

If your business fluctuates strongly seasonally, you can plan the vacation of your staff accordingly
and consider hiring seasonal staff:

Figure 11: Vacation Chart

Note: Of course you cannot force anybody when to take a vacation and how many days are to
be taken. These calculations are just meant to be suggestions of reasonable indicators.

17

3.3.1 Simple Example

If you like to take the maximum sales values (here: 24, 000) as a basis, applying zero vacations to
it, and scale the vacation days linearly to the other sales values:

Figure 12: Vacation - Simple Example

18

3.3.2 More Complex Example

If you got employees who are not present at specified months – RoundToSum rounds to whole
vacation days in the last table:

Figure 13: Vacation - More complex Example

19

4 RoundToSum Versus Other ’Simple’ Methods

There are several different näıve approaches circulating around which try to round values preserving
their rounded sum:

- (worst) Round all values but the last one and replace the last one by the rounded original
sum minus the sum of the previously rounded values (i.e. aggregate all rounding errors in the last
summand):

Figure 14: RoundToSum Comparison - Amend Last

- (better, but still bad) Apply a cascading (sliding) round:

Figure 15: RoundToSum Comparison - Cascading Round

Let us compare these approaches to RoundToSum.

20

4.1 Calculation Example

We create 40 random numbers RAND() ∗ 1000 and compare as follows:

Figure 16: RoundToSum Comparison - Example

Figure 17: RoundToSum Comparison - Example Formulas

21

As you can see, if we simply round each single number, the resulting sum would differ from the
original rounded sum by 0.06. Column J (VIII) shows the difference of the aggregated rounding
error -0.06 in the last summand. Column F (IV) shows the corresponding rounded numbers. Worst
case would be here to come up with an aggregated rounding error of n * 0,005 with n being the count
of your numbers. Example: Take 40 times the number 0.005 instead of the 40 random numbers.

Good practical examples, why you should not aggregate rounding errors in the last summand,
are normally distributed samples of integers.

The cascading (sliding) round in column I (VII) shows 12 roundings to the wrong side. Column
E (III) shows the corresponding rounded numbers. Worst case would be for the cascading round to
round half of your numbers to the wrong side when all numbers could have been rounded correctly.
Example: Take 20 times the number -0.0049999 and then 20 times the number 0.0049999 instead
of the 40 random numbers.

On the other hand, the optimal RoundToSum just rounds 6 values to the wrong side which result
in the least number of changes which achieve the correct rounded sum. The worst case would now
involve n/2 roundings to the wrong side with n being the count of your numbers. Example: Take 40
times the number 0.005 again instead of the 40 random numbers. This is the best solution with the
smallest absolute rounding error for each number and then with the smallest number of roundings
to the wrong side.

4.2 Conclusion

Use RoundToSum. It will apply the least number of changes and it will result in the correct sum
with the smallest absolute (or relative) error.

A cascading round as shown above does not need any VBA nor does it apply any array formula,
but it requires at least as many rounding differences as RoundToSum but can leave you with much
more unnatural roundings which you can hardly explain to any senior manager.

But worst of all is the approach of aggregating all rounding differences in the last summand.
Just imagine 1, 000 people, each having 49 Cents, adding up to $490, which you should distribute
fairly, but rounded to a whole Dollar. In this case you would end up with $490 at the last person,
while RoundToSum would give the first 490 persons one Dollar each and all the others zero.

5 References

Diaconis, P., & Freedman, D. (13. Juli 2007), On Rounding Percentages.

Sande, G. (2005, August 7), Guaranteed Controlled Rounding for Many Totals in Multi-way and
Hierarchical Tables.

Excel VBA A Collection - Contains this text extract and many other VBA Programs and Ex-
cel functions

Excel VBA Eine Sammlung - Contains this text extract and many other VBA Programs and
Excel functions IN GERMAN

22

https://www.sulprobil.de/excel_vba_a_collection_en
https://www.sulprobil.de/excel_vba_a_collection_en
https://www.berndplumhoff.de/excel_vba_eine_sammlung_de
https://www.berndplumhoff.de/excel_vba_eine_sammlung_de

	Rounding Values Preserving Their Sum
	Percentage Example
	Example with Absolute Values
	The User-Defined VBA Function RoundToSum
	RoundToSum Program Code
	Round2Sum Lambda Expression

	Rounding Values Alters Their Sum
	Rounded Percentages
	Monte Carlo Code

	Usage Examples of RoundToSum
	Allocation of Overheads
	Exact Relation of Random Numbers - sbExactRandHistogrm
	Take Vacation When Less is Going on
	Simple Example
	More Complex Example

	RoundToSum Versus Other 'Simple' Methods
	Calculation Example
	Conclusion

	References

